Логин:Пароль:
FAQ по форумуНовые сообщения на Форуме
Страница 5 из 5«12345
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Взвешивания. (sml[ok])
Взвешивания.
KreativshikДата: Пятница, 16.09.2016, 18:42 | Сообщение # 41
Гений
Сообщений: 2357
Награды: 247
Совы: 112
Цитата nebo ()
Т.е получается, что максимум при 3х измерениях 61 монета

Ага.
neboRace, Вы молодцы, но нужно ещё немного подумать.
Если не получится я подскажу.


Жёлтый Зелёный Красный
 
neboДата: Пятница, 16.09.2016, 20:09 | Сообщение # 42
Высший разум
Сообщений: 3417
Награды: 315
Совы: 114
Цитата Race ()
В принципе формула вырисовывается, каждый следующий член будет биться на 4 части и 5ю, которая равна предыдущей.
Благодаря Вашим рассуждениям Race.
Поскольку подтвердилось, что при трёх измерениях максимум 61, то так:
y=5*2+1 для 2х измерений.
y=5*5*2+5*2+1 для 3х измерений.
y=5*5*5*2+5*5*2+5*2+1 для 4х измерений.
y=5*5*5*5*2+5*5*5*2+5*5*2+5*2+1 для 5ти измерений.
т.е. y=2(5N-1+5N-2+5N-3.....51)+1,
А,вообще, я не умею обобщать.
 
RaceДата: Пятница, 16.09.2016, 20:25 | Сообщение # 43
Гуру
Сообщений: 274
Награды: 25
Совы: 7
3 измерения.
3 вз. 5 монет
2 вз. 5л><5л  
       5т><5т
     
1 вз. (10+х)т>(10+х)л в запасе 11- максимум для 2 измерений
что бы получить 61, вы или в запасе взяли не 11 или 50 поделили на 4? как? объясните плз)))
Или вы брали 1 и 2 группа по 12, а 3 и 4 13?
Можете описать способ для 3 взвешиваний и для 61 монеты?
Сколько монет оставляем в ожидании? 13?

Добавлено (16.09.2016, 20:25)
---------------------------------------------
Что то я запутался, это получается что для 2 измерений все равно 11, а для 3 61...) то есть надо пересчитывать ожидание для всех последующих членов? Эх вечером точно не разберусь....

 
neboДата: Пятница, 16.09.2016, 20:38 | Сообщение # 44
Высший разум
Сообщений: 3417
Награды: 315
Совы: 114
Дело в том, что когда у нас только 11 монет, и совсем нет известных, то это предел дла 2х измерений.
А в случае 61 у нас есть уже совершенно определённые известные правильные монеты, их 48 штук.
Начинаем. 12,12,12,12 получаем равенство. В запасе стоят 13 монет. Исследуем их. Берём 10 ставим по 5 на чашки разных весов, а на другие чашки уже известные правильные из 48 предыдущих измеренных, по 5.
Пусть неравенство, значит 5 неизвестных, одного веса, далее их ,как раньше исследуем. Если равенство 5,5,5,5, то 3, стоящие в сторонке проверяем так - 1 неизвестная, 1 из проверенных истинная iz 48 на одних весах, на других так же , а 3я в сторонке ждёт результат.


Сообщение отредактировал nebo - Пятница, 16.09.2016, 20:40
 
KreativshikДата: Пятница, 16.09.2016, 23:37 | Сообщение # 45
Гений
Сообщений: 2357
Награды: 247
Совы: 112
Цитата nebo ()
y=5*2+1 для 2х измерений.
y=5*5*2+5*2+1 для 3х измерений.
y=5*5*5*2+5*5*2+5*2+1 для 4х измерений.
y=5*5*5*5*2+5*5*5*2+5*5*2+5*2+1 для 5ти измерений.
т.е. y=2(5N-1+5N-2+5N-3.....51)+1

Забыли одно слогаемое в скобки добавить 5ⁿ
И того
Можно записать и треугольником
50
5¹50
5²5¹505¹5²
5³5²5¹505¹5²5³
и т.д
сумма членов n-ой строки равна максимальному количеству монет среди которых можно отыскать фальшивую за n взвешиваний.
Так, за три взвешивания найдётся фальшивая среди 5²+5¹+50+5¹+5² монет.
Самые одаренные могут при решении задачи составить уравнение

целочисленные корни которого будут решением. Где n - количество взвешиваний, x - максимальное количество монет, среди которых можно определить фальшивую за n взвешиваний.
15-25-35+45=5³+5⁴
115-125-135+145=5⁴+57
615-625-635+645=55+510
3115-3125-3135+3145=56+513
15615-15625-15635+15645=57+516
.......
Так же при решении можно пойти следующим путём.
Т.к мы имеем двое весов, то мы можем получить при каждом взвешивании пять разных исходов
(=:=),(<:=),(=:< ) ,(>:=),(=:>).
При n взвешиваниях имеем 5ⁿ разнообразных исходов.
При последнем взвешивании значащими будут только два варианта,- либо неравновесие, либо равновесие,- что можно увидеть из алгоритма предложенный nebo, три нам не нужны, т.к они все обозначают неравновесие.
Значит в формулу вписываем ещё один член 5ⁿ-3.
Т.к помимо того что мы при n взвешиваниях должны иметь возможность определить не только фальшивую монету, но и то легче она или тяжелее, т.е должны иметь возможность определить 2 свойства одной монеты, то можем добавить в формулу ещё один член (5ⁿ-3)/2 , что тоже является искомой формулой.
Какой из приведенных вариантов решения Вам по душе, выбирать вам.
Спасибо nebo, спасибо Race, Вы большие молодцы.
Задача решена.
Прикрепления: 9203502.gif(1Kb) · 2131879.gif(1Kb)


Жёлтый Зелёный Красный


Сообщение отредактировал Kreativshik - Пятница, 23.09.2016, 17:34
 
RaceДата: Суббота, 17.09.2016, 12:16 | Сообщение # 46
Гуру
Сообщений: 274
Награды: 25
Совы: 7
а как связанны n и m в решении от самых одаренных?:)
Все остальное прочитал, очень интересно, особенно понравилось последнее решение, если не ошибаюсь это научный подход мат статистики? И подходит он для анализа предполагаемых результатов эксперимента? К примеру для 2 монет результат будет  (5ⁿ-3)/4?

Добавлено (17.09.2016, 12:16)
---------------------------------------------
Хотя, если фальшивые монеты имеют отклонение в весе в одну сторону то даже  (5ⁿ-3)/3?

 
neboДата: Воскресенье, 18.09.2016, 19:04 | Сообщение # 47
Высший разум
Сообщений: 3417
Награды: 315
Совы: 114
Race, формула  (5ⁿ-3)/2 - это для максимально возможного числа монет. И не понятно, что Вы имеете в виду, говоря о 2х монетах в своём последнем посте здесь.
Формула (5ⁿ-3)/2 проста, но красоты нет. Треугольник, который Вы, Kreativshik, построили, красив эстетически. Математика и красота.
 
RaceДата: Вторник, 20.09.2016, 11:35 | Сообщение # 48
Гуру
Сообщений: 274
Награды: 25
Совы: 7
Цитата nebo ()
Race, формула  (5ⁿ-3)/2 - это для максимально возможного числа монет. И не понятно, что Вы имеете в виду, говоря о 2х монетах в своём последнем посте здесь.Формула (5ⁿ-3)/2 проста, но красоты нет. Треугольник, который Вы, Kreativshik, построили, красив эстетически. Математика и красота.
Это было чистое теоретизирование. Для меня красота этого решения в его простоте. Рассмотрим решение аналогичным методом для 2 фальшивых монет, с одинаковый отклонением по массе.
Возможные исходы:
(=:=),(<:=),(=:< ;) ,(>:=),(=:>) к этим добавятся еще и (<:>),(<:< ;) ,(>:>),(>,< ;)
То есть, в итоге мы получаем 9 возможных результатов измерения.
То есть при n взвешивании мы имеем 9n исходов.
При последнем взвешивании при обнаружении каждой фальшивой монеты значимыми будут только 2 варианта. То есть будем иметь -7*2 взвешиваний.
В делителе по идее будем иметь 3 (отличие фальшивых от настоящих, по весу они ьодинаковые, точно будет 4 или 3 мне не понятно, но подозреваю что 4).
В итоге получаем  ( 9n-7*2)/3=22,3 монет. Безусловно это не правильно))) Потому я и спрашивал про этот способ решения, так как не понял его и он в чистом виде. предложенном Креативщиком не подходит к решению аналогичных задач.

Добавлено (20.09.2016, 11:35)
---------------------------------------------
То есть в этом решении использовано:
Ко-во возможных вариантов при Н взвешиваний.
Вычитаем варианты которые заведомо не являются значимыми.
Делим на кол-во отличий искомых предметов от остальной выборки.
В ответе получаем максимальное кол-во предметов для Н измерений.
Безусловно логика должна быть, но какая она и в чем она?
Аналогично с решением от самых одаренных, в чем логика? И каким образом определяется величина М? Не из пальца же оно берется, а каким то образом рассчитывается.

Сообщение отредактировал Race - Вторник, 20.09.2016, 11:31
 
KreativshikДата: Вторник, 20.09.2016, 22:37 | Сообщение # 49
Гений
Сообщений: 2357
Награды: 247
Совы: 112
Race, если вы чего-то не понимаете, то это исключительно ваша проблема.
Пример с двумя монетами не корректен по отношению к выше изложенным рассуждениям, т.к для 2-х монет не может существовать единого алгоритма, т.к при одном и том же количестве монет возможно определить фальшивые как за m так и за n взвешиваний в зависимости от получившейся ситуации на весах, так же найдётся ситуация при которой будет невозможно определить фальшивые монеты.
Цитата Race ()
И каким образом определяется величина М?
m должно быть натуральным.
Каким именно, из условий задачи определить не может быть возможным, поэтому приходится решать данное диафантово уравнение(способы решения диафантовых уравнений можете подчерпнуть в любом из общих курсов по теории чисел)

В итоге получаем следующее множество целочисленных корней

где k - количество взвешиваний.
Прикрепления: 5793099.gif(1Kb) · 8614434.gif(1Kb)


Жёлтый Зелёный Красный
 
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Взвешивания. (sml[ok])
Страница 5 из 5«12345
Поиск:

Интересная информация
Обновленные задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.Точки в круге0
2.Еще одна задача на постро...16
3.Металлы3
4.Бабочка12
5.Квадрат2
6.Стакан наполовину пуст и ...14
7.Белый тигр2
8.Оптимальный выбор автомоб...29
9.Построим касательные8
10.Мертвецы5
1.Rostislav4731
2.Lexx4728
3.nebo3417
4.Иван3061
5.Kreativshik2357
6.никник2047
7.Гретхен1802
8.erudite-man1289
9.Valet937
10.goliv772
1.nebo114
2.Kreativshik112
3.sovetnik49
4.IQFun29
5.Pro100_Artyom27
6.MrCredo22
7.marutand20
8.хан20
9.slltllnll12
10.Ленка11


О проектеГостевая книгаFAQНаписать админуКоллегиФорум ЭрудитовХостинг от uCoz