Логин:Пароль:
FAQ по форумуНовые сообщения на Форуме
  • Страница 3 из 3
  • «
  • 1
  • 2
  • 3
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Площадь круга (sml[ok])
Площадь круга
RaceДата: Среда, 26.10.2016, 12:01 | Сообщение # 21
Гуру
Сообщений: 444
Награды: 35
Совы: 12
Rostislav, а интересно, Ваше решение предусматривало теорему Декарта?
Если не секрет конечно.

Добавлено (26.10.2016, 12:01)
---------------------------------------------
Кстати. Тут коллегиальными усилиями, как одно из следствий построение искомой окружности методом инверсии, получилось еще одно решение.

Особо одаренные могли бы решить данную задачу как:
Из точки С (центр окружности а) провести окружность радиуса ra+1/2rb
Из точки М (центр окружности b) провести окружность радиуса 3/2 rb
Центр искомой окружности будет находиться на пересечении 2 построенных окружностей, а радиус равняться половине радиуса окружности b.
rc=5(1.5-sqr2)
Соответственно точная площадь окружности будет равна:
Sс=П(rc)2=25П(4,25-3sqr2)
(с) Все совпадения в манере изложения результата случайны, закономерности надуманны. Кол-во полезной информации исторически совпадает.


Сообщение отредактировал Race - Среда, 26.10.2016, 12:24
 
RaceДата: Вторник, 09.01.2018, 16:10 | Сообщение # 22
Гуру
Сообщений: 444
Награды: 35
Совы: 12
Так, я тут полгода назад подкинул данную задачку на другой форум) Решение оказалось достаточно тривиальным) сам удивляюсь как его умудрился зевнуть.

Пусть радиус четверти окружности - R
Радиус средней окружности - r
Радиус меньшей окружности - x
Отрезок CB - l
По т-ме Пифагора (мде... для решения задачи использовал т-му Декарта, инверсию, степени точек, позорище)
Для треугольников:
ABF:  (R+x)2=(R-x)2+(R-r-l)2 => (R-r-l)2=4Rx => R-r-l=2sqrt(Rx) (1)
DEF:  (R+r)2=(R-r)2+(R-r)2 => R+r=sqrt2(R-r) => r=R(sqrt2-1)/(sqrt2+1) (2)
CDB: (r+x)2=(r-x)2+l2 => l2=4rx => l=2sqrt(rx) (3)

Подставим (3) в (1)

R-r-2sqrt(rx)=2sqrt(Rx) => sqrtx=(R-r)/[2(sqrtR+sqrtr)] => x=(R-r)2/[4(sqrtR+sqrtr)2] (4)

Подставив (2) в (4) получаем значение радиуса синей окружности)
Прикрепления: 0389593.jpg(32.4 Kb)


Сообщение отредактировал Race - Вторник, 09.01.2018, 16:32
 
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Площадь круга (sml[ok])
  • Страница 3 из 3
  • «
  • 1
  • 2
  • 3
Поиск:

Интересная информация
Последние задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.Термические свойства тел2
2.Два персонажа3
3.Простой парадокс27
4.Можно ли на 4-м ходу парт...2
5.Антифразы54
6.Занимательная математика200
7.Мужики и лошадь1
8.Достаточность основания11
9.Театр одного зрителя3
10.Сигнал для управления4
1.Rostislav4812
2.Lexx4728
3.nebo3484
4.Иван3061
5.Kreativshik2472
6.никник2249
7.Гретхен1802
8.erudite-man1317
9.Valet937
10.Vita900
1.nebo115
2.Kreativshik113
3.sovetnik49
4.IQFun30
5.Pro100_Artyom27
6.MrCredo26
7.marutand20
8.хан20
9.slltllnll12
10.никник12


ГлавнаяГостевая книгаFAQНаписать админуКоллегиФорум ЭрудитовХостинг от uCoz