FAQ по форумуНовые сообщения на Форуме
  • Страница 3 из 3
  • «
  • 1
  • 2
  • 3
Площадь круга
RaceДата: Ср, 26.10.16, 12:01 | Сообщение # 21
Просветленный
Сообщений: 459
Награды: 41
Совы: 12
Rostislav, а интересно, Ваше решение предусматривало теорему Декарта?
Если не секрет конечно.

Добавлено (26.10.2016, 12:01)
---------------------------------------------
Кстати. Тут коллегиальными усилиями, как одно из следствий построение искомой окружности методом инверсии, получилось еще одно решение.

Особо одаренные могли бы решить данную задачу как:
Из точки С (центр окружности а) провести окружность радиуса ra+1/2rb
Из точки М (центр окружности b) провести окружность радиуса 3/2 rb
Центр искомой окружности будет находиться на пересечении 2 построенных окружностей, а радиус равняться половине радиуса окружности b.
rc=5(1.5-sqr2)
Соответственно точная площадь окружности будет равна:
Sс=П(rc)2=25П(4,25-3sqr2)
(с) Все совпадения в манере изложения результата случайны, закономерности надуманны. Кол-во полезной информации исторически совпадает.


Сообщение отредактировал Race - Ср, 26.10.16, 12:24
 
RaceДата: Вт, 09.01.18, 16:10 | Сообщение # 22
Просветленный
Сообщений: 459
Награды: 41
Совы: 12
Так, я тут полгода назад подкинул данную задачку на другой форум) Решение оказалось достаточно тривиальным) сам удивляюсь как его умудрился зевнуть.

Пусть радиус четверти окружности - R
Радиус средней окружности - r
Радиус меньшей окружности - x
Отрезок CB - l
По т-ме Пифагора (мде... для решения задачи использовал т-му Декарта, инверсию, степени точек, позорище)
Для треугольников:
ABF:  (R+x)2=(R-x)2+(R-r-l)2 => (R-r-l)2=4Rx => R-r-l=2sqrt(Rx) (1)
DEF:  (R+r)2=(R-r)2+(R-r)2 => R+r=sqrt2(R-r) => r=R(sqrt2-1)/(sqrt2+1) (2)
CDB: (r+x)2=(r-x)2+l2 => l2=4rx => l=2sqrt(rx) (3)

Подставим (3) в (1)

R-r-2sqrt(rx)=2sqrt(Rx) => sqrtx=(R-r)/[2(sqrtR+sqrtr)] => x=(R-r)2/[4(sqrtR+sqrtr)2] (4)

Подставив (2) в (4) получаем значение радиуса синей окружности)
Прикрепления: 0389593.jpg (32.4 Kb)


Сообщение отредактировал Race - Вт, 09.01.18, 16:32
 
  • Страница 3 из 3
  • «
  • 1
  • 2
  • 3
Поиск:

Интересная информация
Последние задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.Арнольд, да не тот77
2.Простенький вопросик9
3.Гидродинамика14
4.Быстрая река.24
5.А попробуйте ещё это опро...6
6.Задача по логике7
7.Головоломка без ключа2
8.Задача о парадоксе Петров...11
9.Напрасно ли ожидание7
10.Чудо-Юдо и три головы12
1.Rostislav5379
2.Lexx4728
3.nebo3639
4.Иван3061
5.никник2770
6.Kreativshik2472
7.Гретхен1807
8.Vita1578
9.erudite-man1378
10.Valet937
1.nebo123
2.Kreativshik113
3.sovetnik49
4.MrCredo38
5.IQFun30
6.Pro100_Artyom27
7.marutand20
8.хан20
9.никник15
10.Фигаро15

ГлавнаяГостевая книгаFAQОбратная связьКоллегиФорум Эрудитов