Логин:Пароль:
FAQ по форумуНовые сообщения на Форуме
Страница 1 из 11
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Площадь закрашенной фигуры (sml[ok])
Площадь закрашенной фигуры
RostislavДата: Четверг, 21.04.2016, 18:07 | Сообщение # 1
ЭРУДИТ
Сообщений: 4727
Награды: 212
Совы:
Прикрепления: 3158642.jpg(50Kb)


Сова - символ мудрости, знаний и эрудиции.
Сова - это единственная птица, которая может видеть "голубой" цвет.
 
никникДата: Пятница, 22.04.2016, 01:44 | Сообщение # 2
Гений
Сообщений: 2030
Награды: 302
Совы: 10
0, 38 на глазок.

Между своеобразной логикой и откровенной глупостью иногда очень тонкая грань.
 
Oleg4922Дата: Пятница, 22.04.2016, 16:06 | Сообщение # 3
Умник
Сообщений: 92
Награды: 23
Совы: 2
никник, четырнадцатая версия "Компас" говорит, что вы не много ошиблись. Площадь примерно равна   greeting 
 
ArtchiДата: Пятница, 22.04.2016, 16:30 | Сообщение # 4
Гуру
Сообщений: 202
Награды: 5
Совы: 0
Сторона квадрата 8 см, а Rокр.=5 см. То есть кусок дуги окружности = 5-(8/2), соответственно 1 см. Достроем, до треугольника, получим прямоугольный треугольник с катетами. 1 и 4. По Пифагору считаем гипотенузу, Gep^ = k1^+k2^, где Gep - гипотенуза, k1=1 см, k2=4 см. (уж извиняйте, что не стандартное, с^=a^+b^, просто занимаюсь программированием, и зачастую переменные легче объявлять то, что они обозначают, тем более когда в программе более 500-1000 строк, там уже "a, b, c" - путают, что они обозначают, для чего нужны). И так, идём, дальше. Рассчитываем: Извлекаем корень из 17, примерно 4.12 (округлил до 2 знаков). И получится, что две вот этих маленьких стороны без округления круга = по 1 см. Достроем, это участок до квадрата. Получим Plкв=1^ см. Построем треугольник по диагонали квадрата, получим, d=корень из 32 (4^+4^) вычислим диагональ фигурки до скругления, получим, 5.65 (корень из 32)-5 = 0.65 см. Pl = 1^ - (0.65*1) = 0.35 см. (с погрешностью в 0.01-0.02)

Ломая стереотипы....
 
KreativshikДата: Пятница, 22.04.2016, 19:08 | Сообщение # 5
Гений
Сообщений: 2357
Награды: 247
Совы: 112
Если точно, то площадь равна 
если приблизительно то
Прикрепления: 9896623.gif(1Kb) · 8870549.jpg(128Kb)


Жёлтый Зелёный Красный


Сообщение отредактировал Kreativshik - Пятница, 22.04.2016, 19:34
 
vanyaДата: Пятница, 22.04.2016, 19:11 | Сообщение # 6
Умник
Сообщений: 65
Награды: 15
Совы: 0
примерно 0,452
Решается через вычитание из площади квадрата 4*4 удвоенной площади пифагорова треугольника и сектора окружности с радиусом 5 и углом 16,26 градусов.
 
ArtchiДата: Пятница, 22.04.2016, 22:52 | Сообщение # 7
Гуру
Сообщений: 202
Награды: 5
Совы: 0
Извиняйте, господа. Ход решения показался верным. Но, если уж есть точный ответ 0.45 - значит так и должно быть.

Ломая стереотипы....
 
RostislavДата: Суббота, 23.04.2016, 09:51 | Сообщение # 8
ЭРУДИТ
Сообщений: 4727
Награды: 212
Совы:
Oleg4922, Kreativshik, vanya, up

Сова - символ мудрости, знаний и эрудиции.
Сова - это единственная птица, которая может видеть "голубой" цвет.
 
RaceДата: Вторник, 01.11.2016, 17:53 | Сообщение # 9
Гуру
Сообщений: 262
Награды: 25
Совы: 7
S - закрашенной фигуры
S1-площадь фигуры полученная пересечением квадрата и круга.
Sкв - площадь квадрата
Sкр - площадь круга
4S2-площадь сегментов круга которые отделил квадрат
S=(Sкв-S1)/4
S1=Sкр-4S2
S2=R2arccos(d/r)-d*sqrt(R2-d2)
Где R - радиус круга, а d - перпендикуляр опущенный из центра окружности на хорду, в нашем случае, в силу симметрии будет равняться половине стороны квадрата. Имеем:
S2=R2arccos(d/r)-d*sqrt(R2-d2)=25arccos(4/5)-4sqrt(25-16)=25arccos0,8-12
S1=S1=Sкр-4S2=25П+48-100arccos0.8
S=(Sкв-S1)/4=[16-25П+100arccos0,8]/4
Ответ: S=[16-25П+100arccos0,8]/4
Для произвольного квадрата и окружности, при условии что центр окружности совпадает с центром пересечения диагоналей квадрата будем иметь:
r - радиус окружности
a - сторона квадрата.
Sкв2
Sкр=Пr2
S2=r2arccos(a/2r)-a*sqrt(r2-a2/4)/2
S1=Пr2-4r2arccos(a/2r)+2a*sqrt(R2-a2/4)
S=[а2-Пr2+4r2arccos(a/2r)-2a*sqrt(r2-a2/4)]/4


Сообщение отредактировал Race - Среда, 02.11.2016, 09:19
 
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Решенные задачи » Площадь закрашенной фигуры (sml[ok])
Страница 1 из 11
Поиск:

Интересная информация
Обновленные задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.Грампластинка7
2.Занимательная математика93
3.Еще одна задача на постро...8
4.Две страны.5
5.О времена, о нравы ...7
6.Стакан наполовину пуст и ...9
7.Князь6
8.Помогите с тетрисом.3
9.многоугольник16
10.Имя пятого ребенка?1
1.Lexx4728
2.Rostislav4727
3.nebo3416
4.Иван3061
5.Kreativshik2357
6.никник2030
7.Гретхен1802
8.erudite-man1289
9.Valet937
10.goliv772
1.nebo114
2.Kreativshik112
3.sovetnik49
4.IQFun29
5.Pro100_Artyom27
6.MrCredo21
7.marutand20
8.хан20
9.slltllnll12
10.Ленка11


О проектеГостевая книгаFAQНаписать админуКоллегиФорум ЭрудитовХостинг от uCoz