Логин:Пароль:
FAQ по форумуНовые сообщения на Форуме
  • Страница 1 из 1
  • 1
Форум Эрудитов » Логические задачи и головоломки » Физические задачи » Решенные задачи » многомерность. (sml[ok])
многомерность.
KreativshikДата: Вт, 12.04.16, 20:43 | Сообщение # 1
Гений
Сообщений: 2472
Награды: 258
Совы: 113

Векторная алгебра как таковая является "компосом" в многомерных пространствах. С ней можно одинаково хорошо ориентироваться как в трехмерном так и  пространстве  любой иной размерности, и это не просто математическая игрушка, а вполне востребованный инструмент в руках физиков.

Могут ли пригодиться многомерные пространства в классической механике?  Ответ обоснуйте?


Жёлтый Зелёный Красный


Сообщение отредактировал erudite-man - Вс, 17.04.16, 18:15
 
neboДата: Ср, 13.04.16, 17:37 | Сообщение # 2
Высший разум
Сообщений: 3630
Награды: 348
Совы: 123
Под многомерными пространствами подразумевается же не что-то наподобии нашего 3х-мерного или 11-мерного пространства (гипотетического в астрофизике)?
Т.е. понятие пространства здесь имеет условный характер?
 
KreativshikДата: Ср, 13.04.16, 19:57 | Сообщение # 3
Гений
Сообщений: 2472
Награды: 258
Совы: 113
Не вижу повода для подобного вопроса.

Жёлтый Зелёный Красный
 
никникДата: Ср, 13.04.16, 22:26 | Сообщение # 4
Гений
Сообщений: 2710
Награды: 399
Совы: 15
nebo, думаю, понятие пространство здесь имеет геометрический характер, т.е. под ним понимается совокупность всех рассматриваемых измерений, в том числе и наше трехмерное можно б им считать (но в контексте вопроса, очевидно, "много"- больше 3) и конечно 11мерное. Дрфугой вопрос, что астрофизика работает с такими расстояниями, где зачастую уместнее Эйнштейнова, а не Ньютонова (классическая) физика 
Что касается вопроса, мне кажется очевидным, что уравнение n-й степени легче решать в n-мерном пространстве. Но разумеется в том случае, если хорошо владеешь математической моделью n-мерного пространства, и если такая модель достаточно разработана.


Между своеобразной логикой и откровенной глупостью иногда очень тонкая грань.


Сообщение отредактировал никник - Чт, 14.04.16, 06:31
 
neboДата: Чт, 14.04.16, 14:59 | Сообщение # 5
Высший разум
Сообщений: 3630
Награды: 348
Совы: 123
Я прекрасно понимаю, что то понятие о 11-мерном пространстве, о котором я говорила, относится к релятивистской механике.
И вопрос был задан не с целью получения прямого ответа, ну да ладно.
В классической механике понятие многомерного пространства имеет другой смысл.
Если состояние какой-нибудь системы задаётся n данными, то это состояние можно представлять, как точку n-мерного пространства, а конкретные значения свойств физической реальности, т.е. параметры, будут координатами этого n-мерного пространства. И все состояния системы можно будет описать геометрически.
Мне кажется, в классической механике все или почти все состояния рассматриваемых систем можно задать n параметрами, а включая положение в пространстве, всегда получить многомерное пространство. В таких пространствах состояние системы будет изменяться в зависимости от каждого параметра, т.е. изменяться в n направлениях, что даёт основание говорить о n-мерности пространства для данной системы.
 
KreativshikДата: Сб, 16.04.16, 19:04 | Сообщение # 6
Гений
Сообщений: 2472
Награды: 258
Совы: 113
neboup bravo greeting
Есть такое понятие как  конфигурационное пространство, обозначается как Rⁿ, где n - размерность пространства, в физике это понятие расширено до понятия "фазовое пространство",  которое удобно задавать для описания динамики любой системы,  благо алгебраический аппара векторной алгебры позваляет решать такие задачи для любого n.  Размерность задается степенями свободы системы и динамической состовляющей, так для описания движения материальной точки  задается шестимерное фазовое пространство (3 пространственных координаты и для каждой  из неё состовляющая скорости) .


Жёлтый Зелёный Красный
 
Форум Эрудитов » Логические задачи и головоломки » Физические задачи » Решенные задачи » многомерность. (sml[ok])
  • Страница 1 из 1
  • 1
Поиск:

Интересная информация
Последние задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.Мат в 3 хода0
2.Задачи Шахматного сапёра1
3.Белые ставят мат в 3 хода0
4.Задачи для начинающих шах...111
5.Нашёл интересные варианты...0
6.Разрезать на три части и ...7
7.Разрезать на три части и ...1
8.Формат серии А.32
9.Найти вероятность5
10.вычислить дисперсию3
1.Rostislav5376
2.Lexx4728
3.nebo3630
4.Иван3061
5.никник2710
6.Kreativshik2472
7.Гретхен1807
8.Vita1453
9.erudite-man1342
10.Valet937
1.nebo123
2.Kreativshik113
3.sovetnik49
4.MrCredo37
5.IQFun30
6.Pro100_Artyom27
7.marutand20
8.хан20
9.никник15
10.Vita13

ГлавнаяГостевая книгаFAQОбратная связьКоллегиФорум Эрудитов