Логин:Пароль:
FAQ по форумуНовые сообщения на Форуме
  • Страница 5 из 5
  • «
  • 1
  • 2
  • 3
  • 4
  • 5
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Сложно но можно. (sml[theme])
Сложно но можно.
zhekasДата: Ср, 02.11.16, 10:27 | Сообщение # 41
Гуру
Сообщений: 166
Награды: 43
Совы: 6
Чтобы избавиться от действий с дробными числами можно еще разложить число по степеням 5

Например 745 = 1*5^4 + 4*5^2+4*5^1

Тогда количество нулей равно 1*(5^4-1)/4 + 4*(5^2-1)/4 + 4*(5^1-1)/4 = 156 + 4*6 + 4*1 = 184


Сообщение отредактировал zhekas - Ср, 02.11.16, 10:28
 
RaceДата: Ср, 02.11.16, 11:48 | Сообщение # 42
Просветленный
Сообщений: 459
Награды: 41
Совы: 12
Пока не верно.

Цитата zhekas ()
Чтобы избавиться от действий с дробными числами можно еще разложить число по степеням 5

Например 745 = 1*5^4 + 4*5^2+4*5^1

Тогда количество нулей равно 1*(5^4-1)/4 + 4*(5^2-1)/4 + 4*(5^1-1)/4 = 156 + 4*6 + 4*1 = 184

Интересно, я пытался вывести аналогичную формулу, но потерпел неудачу) Красиво, мои аплодисменты.

Попытка №5
Постараемся кратко описать наш ряд:
51*52,112*52,173*52,234*52, 295*52,301*53, 366*52, 427*52, 488*52, 549*52, 6010*52,612*53 и так далее.

Добавлено (02.11.2016, 11:48)
---------------------------------------------
m52=5+(5+1)*(k-1)
m53 при достижении k значения кратного 5 значение m увеличивается на +1
m54 при достижении k значения кратного 25 значение m увеличивается на +1
и так далее.
Тогда m можно выразить как:
m={5+(5+1)*(k-1)}+{k/51+k/52+k/53+...}, округляя слагаемые с делителем в меньшую сторону.
Проверим:
Берем k=1, потом увеличиваем значение k на 1 с каждым шагом, запишем результат ряда:
5,11,17,23,29,(+1 от k/51),36,42,48,54,60,61 и так далее.
Ряд сходится, с одним но, надо строго учитывать, что сначала записываем результат полученный первым слагаемым {5+(5+1)*(k-1)} с учетом уже ранее достигнутых значений второго слагаемого {k/51+k/52+k/53+...}, это дает нашу первое выколотое число, потом учитываем достижения первого подслагаемого второго слагаемого кратности (k/5a=KЄN) - второе число и так до достижения n-нного подслагаемого), если записывать в такой форме, то мой ряд, теперь уже точно, дает все выколотые нули. В ряде, необходимо учитывать только те числа которые мы получаем при достижении условия кратности для любого k/5a=КЄN, для всех дробных значений учитывается число полученное путем сложения первого слагаемого и накопленных значений второго.
Окончательная формула:
m={5+(5+1)*(k-1)}+{k/51+k/52+k/53+...}={5+(5+1)*(k-1)}+∑i=1i=f[k/5i] где kЄ[1;+∞)

Извиняюсь за косноязычность, так как матан, тервер и матстат я никогда не применял в своей роботе, соответственно все забыл. При решении использовал только элементарную математику и логику.
{k/51+k/52+k/53+...} в втором слагаемом у нас и накапливаются лишние нули, относительно простой формулы расчета выколотых нулей {5+(5+1)*(k-1)}.
Возможно существует другой способ решения, но я в силу своего узкого взгляда на данный вопрос, не вижу с какой стороны подойти.
Если просто подставить в полученную формулу kЄ[1;+∞) то мы получим все пороговые значения m, не пороговые m можно получить по формуле:
если mn-6≤mn-1, то числами из ряда m будут все натуральные числа Є [mn-1+6;mn]


Сообщение отредактировал Race - Ср, 02.11.16, 14:13
 
Форум Эрудитов » Логические задачи и головоломки » Математические задачи » Сложно но можно. (sml[theme])
  • Страница 5 из 5
  • «
  • 1
  • 2
  • 3
  • 4
  • 5
Поиск:

Интересная информация
Последние задачи Сообщество эрудитов ВКонтакте Рейтинг сообщений Совиный рейтинг
1.купить диплом экономиста0
2.Задачи для начинающих шах...114
3.Ребус странный1
4.Ребус1
5.2000 монет19
6.Задачи Шахматного сапёра1
7.В мире животных1
8.Кинематограф5
9.Белые ставят мат в 3 хода1
10.Мат в 3 хода1
1.Rostislav5376
2.Lexx4728
3.nebo3630
4.Иван3061
5.никник2714
6.Kreativshik2472
7.Гретхен1807
8.Vita1457
9.erudite-man1342
10.Valet937
1.nebo123
2.Kreativshik113
3.sovetnik49
4.MrCredo37
5.IQFun30
6.Pro100_Artyom27
7.marutand20
8.хан20
9.никник15
10.Vita13

ГлавнаяГостевая книгаFAQОбратная связьКоллегиФорум Эрудитов