olgaSamara | Дата: Ср, 18.08.21, 09:22 | Сообщение # 1 |
Ученик
Сообщений: 4
Совы: 0
| Наверное не совсем тема задачек, но стало интересно, тем более последнее время в области любительской математики какое-то затишье.
На днях российский футуролог и инженер-математик Петров И. Б. (Иван Борисович, а то есть теска Игорь Борисович) опубликовал статью "[Петров И. Б. "Квазиэкспоненциальные простые числа", СИ, 2021 год], где предложил для поиска больших простых чисел рассмотреть последовательность чисел вида aa-a-1, где a > 2, a - любое натуральное число.
Сам Петров определил простые числа для показателя a < 5000. При том последнее число при котором aa-a-1 простое - 1379. А вот дальше интересно. Нашлись люди которые прогнали формулу Петрова до a = 10 000 (или 100 000 - я не помню) и не обнаружили ни одного простого числа. Использовали они алгоритм Миллера — Рабина всего для нескольких раундов (что мне кажется несомненно мало для чисел с показателем a > 1000, вероятность не большая), но возник вопрос, а есть ли простые числа после a = 1379 ?
Вообще я не вижу ни какой причины - почему таких чисел не может быть. Хотя тема поднята в сети - я честно считаю глупо обсуждать конечность простых чисел для какой угодно последовательности натуральных чисел. Другое дело практическая сторона вопроса. Почему Петров вообще предложил такую странную последовательность? А он нигде это не пояснил
Я забыла как подобные числа называются (по типу aa), но где-то про них было написано. Из особенностей у них резкое возрастание разрядности итогового числа. И пожалуй все! Разве только чтобы не мелочится и сразу побить рекорды чисел Мерсенна и GIMPS . Кстати, если преобразовать числа Петрова, то получим: a(aa−1−1)−1. Проще тогда рассмотреть: aa−1−1. Тоже интересная последовательность
|
|
| |