И с фига ли это 9, что за бред!!! У меня 17 друзей, которые между собой не всегда здороваются, и со сколькими из них я сегодня поздоровался. Это не решение, или задача не полная.
если допустить что кто-то из коллег может ни с кем не здороваться, то ответ 8 или 9. если подразумевается что каждый хотя бы с кем-то здоровается, то ответ 9
на самом деле суть не в том с кем здоровается он и хочет ли он с кем здороваться.просто если учесть,что всего вместе с ним на работе 18 коллег и КАЖДЫЙ ЗДОРОВАЕТСЯ С РАЗНЫМ КОЛИЧЕСТВОМ ЛЮДЕЙ то один из них поздоровается с одним человеком,второй из двумя,третий из тремя и так далее, то по теории вероятности он поздоровается с половиной всех людей. но все же задача построена неправильно
Сам Эрудит один из 18. Все здороваются за руку с разным числом товарищей по работе. Что ему мешает быть одним из 18? Может меньше, может больше. От 0 до 17 рукопожатий на человека.
Настя, тут дело не в теории вероятности, а в том что невозможно построить список рукопожатий так чтобы каждый из 18 человек здоровался с разным числом сотрудников. В лучшем случае получается что двое здороваются с 9 сотрудниками. А поскольку, по условию, все кроме самого эрудита здороваются с разным числом сотрудников, то он и есть один из этих двоих, которые здороваются с 9 другими
у меня на работе 20 коллег и я со всеми здороваюсь т. к. все нормальные ребята. этот эрудит или сам черт по жизни и здоровается с 9ю чертями или остальные 8 черти. А вообще задача гавно!
По условию задачи, все коллели здороваются с разным количеством коллег. То есть ни один коллега не здоровается с таким же числом коллег, как и какой-нибудь другой коллега. Из этого следует что х1 рукопожатий может быть только у одного коллеги. Значит максимальное число рукопожатий равно 18-1=17 так как всего коллег 18, но коллега не может здороватся сам с собой, а минимальное число рукопожатий равно 0 (я думаю это и так ясно). И если коллега(1) подоровается с коллегой(2), то коллега(2) не станет здороваться с коллегой(1). Из этого можно сделать вывод что сумма всех рукопожатий равна сумме от 0 до 17. Эта сумма равна 162. Теперь мы эту сумму делим на кол-во коллег вместе с Эрудитом т.е. 162/18=9. Это наиболее возможный вариант, но возможны и другие.
Каждый из колег эрудита пожимает руку разное количество раз, то есть возможны варианты: 0,1,2...16 и 1,2,3...17. Рассмотрим вариант 1,2,3...17; Пускай первым пожимает руку самый воспитанный , у него 17 рукопожатий, если он пожмет руку всем оставшимся колегам кроме эрудита, то у него остается одно рукопожатие, которым он обменяется с эрудитом. При этом 2 колеги останутся "без рукопожатий" тот у которого было 17 рукопожатий и тот у которого было одно рукопожатие. После этого у нас останутся уже 15 колег "с рукопожатиями" 1,2,3....15. Опять проделываем ту же операцию что и в предыдущем шаге и опят "самому воспитанному" придется здороватся с эрудитом. Проделываем эту операцию пока не останется один колега с одним рукопожатием. В итоге у нас получтся что эрудиту пожали руку, 9 раз самые воспитанные. В случае с с 0,1,2...16 тоже 9 рукопожатий, кто не верит может пересчитать .